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Abstract

The dependence of the TEVATRON dynamic aperture on the
syatematic high fleld muitipole errors of the bending magnets is
studied using a distortion function technique including second order
affecta in perturbation theory. The results are in good agreement
with tracking studles, It can be concluded that the dynamic aperture
of the TEVATRON 1s given by the break off of the guide field for a
large distance from the magnets center. There is no "accidental®
puild up of single driving terms due to unfortunate choice of the
phade advances pey FODO cell. It is expected that a somewhat
smoother curve of the gqulide field as a function of the distance from
the center would lmprove the dynamic aperture. A detailed discussion
and derivation of distortion functicons is given in the appendix.



1. Intreduction

The design of Lhe superconducting dipole magnet is one of the
crucial aspects of a large future hadron collider. The magnets costs
- a zignificant part of the total costs of such a project /35C84/-
depernd strongly on the magnet aperture and on the required accuracy
of the magnet manufacturing and assembly.

The =zame parameters are very important for beam dynamics. The
magnet, aperture  requirement 1is determined by the beam size at
infjection, the linear lattice design, and an operaticnal need for
free aperture to allow for injection errors and orbit distortions,
egsential for commissioning and optimizing the machine performance.
The magneta imperfections are determining factors for the beam
atabllity and the dynamic aperture.

An optimum magnet design implies that the physical aperture of
the machine is nearly identical to the dynamic aperture. Otherwise,
magnet aperbture 1is wasted if 1t cannot be used by the beam. Magnet
acouracy is 3 wasted offort if  the dynamic aperture can not be used
due to physical aperture restrictions.

In existing machines, the problem of matching the magnet design
as well as posgsible to the beam dynamics requirements has hbeen
avolded by applying a certaln safery factor. One wants to avoid
Lhege <@Xtra costs huilding a large future machine.

The field quality of a superconducting mignet is determined by
pergistent currents effects mainly at injection energy, the accuracy
and mechanical stability of  conductor placement, and by the design
of the wconductor arrangement. There 1is a distinction between
designed and random field errors. We will concentrate on the
aystematic multipole ervors, the sum ¢f designed and average random
errors in this report.

The aim of this study is to reveal how details of the systematic
guide fileld errors are related to the dynamic aperture and the beam
dynamics.

The reason why the TEVATRON has been chosen as a test lattice is
quite obvicus. The TEVATRON 1is the prototype of superconducting
aynchrotrons. In wmany aspects it is very similar to any future large
machine.

The well tested tool for such investigations are tracking
calculations using conventional kick codes. For the TEVATRON, such
caloulations were performed in  the past /WILB3/, /GEL83/ and have
been compared with the multipole structure of the TEVATRON diooles.
But it is  wvery difficult to relate the vresults of tracking
calculations with details of the magnet structure. In order to make
gure rot to be misled by accidental coincidences one has to perform



a large numbar of tracking runs chanqing many parameters
ayetematically. Thla 1is wvery costly .time consuming, and after all,

does not guarantee success.

Analytic methods are therefore a very desirable complement to
tracking calculations. For the TEVATRON first attempts were made
/WILAE3/ using Moser transformations /MOSS55/ to cobtain the nonlinear
distortions of phase space trajectories as a perturbation expansion.
Recently, the lowest order contributions to these distortions have
heen introduced as ‘distortion functions’ /COL84/. We will use this
expreasion 1n this report for nonlinear phase space distortions
expanded to any crder in perturbation theory.

The basic i1dea to obtain phase space distortions as a result of
a canonical transformation 13 as follows:

The nonlinear dynamics iz described by a nonlinear hamiltonian,
which 13 a product of the nonlinear field coefficients and powers of
the particle distance from the equilibrium orbit. The hamiltonian
can  he  deconpofed  Into fast osecillating (nonresonant) terms,
constant (dertuningl) terms and slowly varying (resonant) terms. The
congtant and slowly varying terms dominate the particie motion. The
fazt gacillating terms are expected to cancel over many revolutions
in the machine and can be treated as a distortion. Resonant terms,
however, can be avoided by a careful choice of the linear machine
tunea. If one finds a coordinate transformation into a new
hamiltonian system where the new hamiltonian contains only constant
terma for which the solution of the equations of motion is trivial,
the whole nonlinear effect is described by the c¢oordinate
transformation back intc the o0ld system. The distortion functions
used here are a  perturbation expansion up to 2nd order of this
transformation.

Though the concept of successive canonical transformations is
well known and has been often described in the literature, explicit
gxpressions for two degrees of freedom for any multipole order and
for higher orders in the perturbation expansion are not easily
tound. Therefore details of the analytical model used here and the
faormulae on which the study 1is Dbased are derived and presented in
the appendices.

The numerical results presented in this report are obtained from
the computer code CANOL /CAN8S/ which calculates driving terms,
distortion functions (up to second order perturbation theory incl.
Lermd up to Z24-pole) and resulting phase space trajectories.

The report is structured in the following way:

First the model which describes the TEVATRON will be presented.
The analysis 1Is based on this model.

In the following section application of the phase space
diztortion concept to the TEVATRON model will be presented and
discussed,



Then pnumerical resgults are shown and the multipole errors and
rheir impact nn  the dynamic aperture will Dbe discussed order by

order.

he appendices describe details of the formalism.

2. A Model for the TEVATRON

2

The analytic method is quite different from tracking
calculationg. In tracking one usually tries to describe the real
lattice az closely ax  poszible. Because of the complexity of the
input it is very Alfficult to obtain a qualitative understanding of
how the tracking resultz come about. Therefore the tracking code
appears as a ‘black hox’.

Ar analytical method loses 1its advantage 1if one proceeds the
safe way. An imwportant asgspect of analytic calculations is that the
formilation of the problem leads transparently to the final results.
It i{a therefore egsential to condense the complexity of a lattice
into a medel which contains only the essential features of the
lattice.

in this senge a sinplified model of the TEVATRON is introduced
which is the basis of the study.

The TEVATRON consists of six sextants separated by straight
sections. Each sextant arc is composed by 16 FODO cells. Four dipole
magnets (1=6.127m, ©=8.2 mr) are 1in each half cell. The arc is
compieted at the downstream end by 3 additional dipole magnets. The
regularity of the arc is distorted by two missing dipcles in the 7th
half cell from the upstream end of the arc.

In the model, nonlinear forces are concentrated in the middle
of e2ach half cell {(or in the bending center .of a group of 2 or 3
dipales), Nonlinear forces in quadrupole magnets are neglected. Thus
the straiaht sections enter in the description of the machine only
by a betatron phase advance and different B functions in the first
half cell and the last 3 dipoles.

There are two kinds of straight sections. This reduces the
superperiodicity of the TEVATRON to 2: two high B straight sections
with a maximum B of = 250m and four normal straights with 8=150m.
However the phase advance was designed to be the same for each
straight section. Neglecting the difference in the g-functions over
the first and last group of
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fig 2.1 TEVATRON Lattice Model with Linear Lattice Functions



dipoles in the arc for the high B and normal straight section, we
have restored the sixfold symmetry. This is not only a large
reduction of complexity without sacrificing much lattice
information, but it also reduces the computing effort by a factor of
36.

The chromaticity correcting sextupoles are placed next to the
gquadrupole magnets in the real machine. In order to reduce the
number of nonlinear kicks and the computing time, they have been
moved to the center of the half ¢ell in the model. The sextupole
strengths have been scaled with

. 312 . . 3 R 1 . 2

(B, for terms~x" and with B ‘8, for terms~x-y
which meana the only error 1n doing 8o arises from neglecting the
phaze advance between the actual sextupole position and the middle
of a half cell (=17°), This 1s not a more severe approximation than
concentrating the nonlinear kicks of the dipole magnets.

In the real machine some further minor distortions of

supersymmetry are present which are neglected.

The multipole errors used in the model are the average cof the
measurementa made for each individual TEVATRON dipole /HAN79/. The
numbers are listed in table 2.1.

It should be mentioned at this point that it is not expected
that the results of this study will quantitatively agree with
mneasurements made at the real machine or with simulations based on
the meagsurements of magnet errors. However it is expected that the
gualitative results vreflect the coherence of basic lattice
parametera, magnet properties and beam dynamics.

The model lattice and hasic linear lattice functions are shown
in fig 2.1.

TABLE 2.1

Average Multipole Components Measured at_j} inch

relative field errors in units of 10

normal coefficlents bk skew coefficients a)
t-pole 0,99 0,38
8-pole -, 27 -.07
10-pole -.76 -.07
l2-pole -.05% -.10
l4~pole 6£.69 0.15
16-pole 0.02 0.25
18-pole -15.69 -.73
20~pole 0.01 0.42



3, Phase HGpace Distortions in the TEVATRON

The difficulties of wusing the concept of isolated resonance
driving terms for a real machine llke the TEVATRON are well known:
Evaluation of driving terms for realistic cases very often results
in a large number of equally important terms vrather than one
dominant one. Furthermore, a driving term 1is Jjust one term in a
fourier serlies of a component of the nonlinear field which dominates
the reat of the series only 1if the distance to the rescnance is
cloge enough. This, however, 13 always avolded 1n real machine.
Therefore driving terms or widths of 1sclated resonances calculated
for a real machine are only a relative measure of the importance of
3 certain component of the nonlinear field.

Therefore it 13 more advantageous to use the phase space
distortions as such & measure. First of all, they contain all
harmonicas of a certain component of the nonlinear force. If the
toral distortion i3 2mall, the lowest order distortion functions are
a sufficiently accurate description of the nonlinear motion. Near
the dynamic aperture the lowest order distortion function concept
breaks down hecause distortions Dbecome very large and many higher
ordera in the perturbation expansion contribute. But even in this
gltuation distortion functions are wuseful. The strongest terms of
the distortions at the dynamic aperture are those terms which ocught
to be retalned as dominant terms in the hamiltonian. An analysis of
the phase space distortions therefore provides an excellent
criterlion for the selection of driving terms. Moreover the betatron
anplitudes for which the distortion function concept obviously
breaks down agree very well with the dynamic aperture cobtained from
the hamiltonian procedure having chosen the “right" driving terms.
(This is not very surprising after a close look at the mathematics
wnich determines the unstable fixed points and which determines on
the other hand the amplitudes Dbeyond which the distortion functions
become unphysical (see below).)

If one 13 not interested in details of phase space trajectories
hut only in which are the dominant terms and 1in why are they
dominant, one can do without the hamiltonian procedure and draw
conclusions from the distortion functions alone.

In this sense we are calculating vrelative distortions 8¢ for
the betatron amplitudes (emittance or Lagrange invariant)

Ex=x2-y+2xx’-m+x‘2-5
of the form:
n-2 m
Se/e. = 1+ T vo._ J.2 0% cos(vb_+ub +& )/ sinmd
Sele nnv x y os(v - V] v ¥ nmop 5inm vQX+qu)

nmvu



The diatortion 18 calculated for a certain position in the lattice
a3 a function of the betatron phase angle #. The variable J is the
Polncare integral invariant [dé-e(®)/27 where & 13 the distorted
emittance. Note that the Invariant phase space area would not change
if the nonlinear forces were switched off adiabatically. It
correaponds therefore to the radius of a circular linear phase space
trajectory and will be referred to as the "undistorted"” emittance or
betatron amplitude. The 1Integers n+m are the multipole order and
[vl+lul 13 the order of the nonlinear resonance potentially driven
by the component.

A similayr formula 13 glven for the distortion in the y-y‘-plane.

To obtain the distortion of the betatron phase 8% as a function
of the undiatorted ampliitude J one has to invert the following
expression:

n-2
£F = y 04 2
u@x~ 1 + Z 20 J

sin(v(¥ -8¢ )+u(¥ ~-80
X X v
nmvii

y)+@nmvp)/51nn(vgx+uQv)

RS |

J
nmvu X

whaere ¥ 13 the undisturbed phase. This form of the distortion is the
same for all orders of the perturbation expansion. The coefficients
o depend on the linear lattice functions and the multipole
caefficlents and are given in appendix A.(sections A7,8,9)

The phaze space distortions have been calculated for the test
lattice preaented 1In the previous section. The tunes have been
chosen carefully in order to avoid resonance enhancement of the
distortions.

Fig 3.1 shows a projection of & distorted phase space
trajectory on the x-x’' and y-v' plane for different emittances. The
undisterted emittances have been chosen to be equal for x and y
(round keam). Because the phase phase trajectories in x-x' depend on
the phase angle in y and vice wversa, points with the same phase
angle in v and x respectively have been chosen. The projection can
tharefore be considered as a cut through the 4 dimensional phase
space for (approximately) constant vertical betatron phase.

The distortions Include first order effects up to 20-pole and
second order effects up to the corder n+m=10 {that includes
interference of the strong 18-pole and 6-pole, l6-pole and B-pole,
ld~pole and 10-pole, lZ-pole and 12-pole). The cutermest trajectory
iz the trajectory for which the slope of the distorted amplitude &e
a3 a function of the undistorted amplitude J 1is zero. This is
sxpechbed to ke a trajecteory very close to the dynamic aperture.
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fig 3.1 Projections of a phase space

trajectories

a) on x-x' plane for & = constant
b) on y-y’ plane for Qiz constant
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In fig 3.2 the minimum value of the distorted emittance €(2%) is
shown as a function of the undistorted emittance J. The dynamic
aperture is expected to occur when the slope of this curve is zero
{(dashed 1ine). Comparison with tracking calculations ( dotted line)
using the RACETRACK kick code /WRU84/ shows good agreement with the
distortion function result. The dash-dotted curve has only first
order terms which shows that the contribution from the second order
termg are approximately 1/4 of the first order terms. This shows the
importance of higher order contributions near the dynamic aperture.
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The nonlinear tune shift as a function of the undistorted
emittances J_+J_ 13 shown in fig 3.3a and 3.3b. The tune shift is
rather linea if the range between 0 and 3 7 mm mr and it becomes
strongly nonlinear near the dynamic aperture.
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4, Detailed Discussicn of Multipole Errors Qrder by Order

In order to understand the results presented in the preceding
gection, we have to decompoge the total distortion into
contributions origlinating from the different multipole components of
the nonlinear field.

A lock at the resonance denominator spectrum (fig 4.1) confirms
that there are only few terms among the distortion functions which
are enhanced because they are close to a resonance. This happens for
the terms with 7QX~ZQ for which one obtains a resonance enhancement
of %4, We will asee lafer that the dynamic aperture is not very much
affected by these terms. Beslides this the spectrum looks very well
palanced with most of the terms near unity.

We first compare the spectrum of phase space distortions for an
emittance which corresponds to the beam size at high energy {e=0.2
min me) and the emittance near the dynamic aperture (eg=6 T mm mr).
(The distortion amplitudes are given by eg. 9.7 in appendix A for
all terms characterized by n+ms<l12 and |v|+|u|<12 which includes 915
terms.) Aa one expects from the above form of the distortion, for
the =mall amplitudes (fig 4.2 a,b,c) the low order multipoles (6-
poles, R-poles) dominate the distortions which are confined to
values below 0.2%. Near the acceptance limit (fig4.3a,b,c) only
14,18 and 20-pole are important. The distortion amplitudes reach
25%.

The moat 1mportant contributions (at least up to an order
n+m=1907 are firat order terms (fig's 4.2a, 4.3a) for small and large
amplitudes ag well., However the second order terms which consist of
¥-1ike terms and y-like terms (see appendix A) are an important
contribution at the large amplitude and cannot be neglected. This
reflects the fact that the perturbation expansion diverges near the
dynamic aperture and many higher orders contribute unless there is a
dominating lower order term enhanced by a small resonance
denominator which we can exclude in our case. Fig 4.2b,c and fig
4,3h,¢ show that the most important 2nd order contributions are
terms with n+m=10. They are produced by the interference of the
strong 18-pole and the 6-pole and the interference of the l4-pole

with the 10-pole.
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It is also wvery instructive to compare the strongest
contributions to the distortion from the different multipole
components and plot the appropriate distortion as a function of the
undistorted emittance (0 =J_. see fig 4.3a,b,c). At emittances below
I 1T mm mr the 3gextupole cgntributions are by at least 1 order of
magnitude larger than any other component. At J=1.5 mmm mr however
the situation has changed. Above this amplitude 14-pole and 18B-pole
components are by far the strongest contributions and at the dynamic
aperture J=5.4mmm mr, the 18-pole compcnent 1s almost an order of
magnitude larger than any other multipele term. The 12-pole and the
16-pole and normal 20 pole are the least important contributions
whereas the octupole is comparable with the sextupole (fig 4.4a).

The skew terms (fig 4.4b) are in general smaller than the
normal terms. This 1is simply because the skew components of the
field are smaller than the normal components. An exception is the
skew 20-pole which becomes almost as strong as the normal lé4-pole at
the dynamic aperture.

TABLE II

e e s e e e e e e S S i e e Wit arw = = e A m i i mm e AR e MR R e ek S W e e e N AL W o e e e ke A e

1st crder normal lst order skew
multipole n m v u rel.dist. multipole nm v u rel.dist.
6 1 212 .007 6 21 2-1 .Q04
B 222 2 .00B 3 3131 .001
10 3212 .006 10 4 1 2-1 .001
12 4 22 2 .003 12 5131 .002
14 16 1-4 .091 14 2503 .002
i6 26 2 2 .,002 16 5331 .01l
18 36 12 .348 18 27 07 .,025
20 small 20 7 3 1-3 .035
2nd order ind orde
normal terms nom v oy rel.dist. skew terms nm v u rel.dist.
18 5 2 7-2 .,002
20 4 4 2 2 .010 20 5 3 %3 .006
22 54 7-2 .0&60 22 2 7 2-5 .025
24 4 6 4 4 .043 24 555 3 .047
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Table II gives a listing of the strongest contributions to the
diatortion from.each multipole component and its characteristics.

There are several factors which cause a particular term to be
important or dominating:

* The multipole component which drives the term is large.

* The reaonance denominator is small.

* The contributionsg from the different nonlinear elements around
the ring build up rather than cancel each other,

4 The term is a coupling term with n close to m and drives a
low order vresonance (|vi+|u| smaller n+m, large binominal
factors).

4 The distortion phase of that term has to be such that there is
a positlive interference with other strong terms.

An 1mportant aspect of the design of the magnet and the choice
of phase advances and tunes should be to avoid the coincidence of
all thesge factors which can result 1in an accidental dominance of a
few terms which can cause a drastic reduction of the dynanmic
aperture.

We want to analyze the strongest contribution to the distcrticon
under these ccnditions.

The 18-pole component together with the also strong lé4-pole
describhes the break off of the guide field. It 1is not very
aurprising that this multlpole has the largest impact on the dynamic
aperture

regonance denominators of almost all the strong terms considered
da far are not particularly small with the exception of the terms
with v=7, pu= -2 where the enhancement is 54. The strongest 18-pole
term {(n=3,m=6,v=1,u=2} 13 only enhanced by a factor of 1.7 which
means that the dynamic aperture 1s not reduced by an unfortunate
choice of the tunes.

It 1a furthermore not surprising that the terms with a large
binominal factor
(n+m-1) !
Y1 (név)i (m;u)! (mgp)l (see appendices)

n+v
2

are large for the terms which cause a large distortion.

{
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Finally we have to consider the build up of the terms as a
auperposition of the nonlinear elements in the ring. If one neglects
the effect of the misszlng magnets in the atructure, one can use the
formula Al3.3 which gives the distortion amplitude for a regular
FODO structure as a function of the phase advance per cell and the
nunker of cella. Azsuming & =& one finds for all strong terms a

build up factor smaller than one.
Fig. 4.5 shows the build up factor

Sin(§(V+H)§c}/Sin((V+H}@C/4)r k=16, @C: 68°, v+u = 1,...12

for several phase advances near 68° as a function of the phase
nultiplier (v+u). The TEVATRON phase advance with 68.8° is fairly
well chosen. The build up of terms could be improved however by
lowering the phase advance to 67° which corresponds to a machine
tune of 18.9 instead of 19.4 (neglecting the missing magnets which
maximally add 0.75 to the built up factor).

A list of the strongest 1l8-pole contributions is given in table III.

TABLE IIT

ot e s e e o = A = e rr cam —— — mas e em i W mm kA e r —— —— YR A A T m e o e e e e e e S Am e e im e e

term binominal resonance build up relative distortion
nmviu factor enhancem, factor Se/e for J=6mmm mr
54 3 0 420 1.18 0.66 0.141

5 4 3-2 280 3.15 0.61 0.100

541 2 560 1.70 0.66 0.243

5410 840 1.54 0.61 0.157

54 1-4 114 4.21 0.66 0.121

361 2 420 1.70 Q.66 0.348

36 1 0 560 1.54 0.61 0.127

36 1-4 168 4,21 0.66 0.301

36 3 2 140 1.41 0.79 0.126

3 616 28 6.37 1.11 0.175

7 2 7-2 4 54.42 0.79 0.227

7 2 5 0 56 2.54 0.79 0.171

72 3 0 198 1.19 0.66 0.144

7210 280 1.54 0.61 0.184
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The total distortion as shown in figs 3.1 and 3.2 is essentially
the superposition of these terms with proper distortion Ehasgs.
There are 15 singular distortion contributions larger than %04 wh%ch
result in a total distortion of 16%. This shows that the distortion
phases are very well distributed for our test lattice.

The second order terms (fig 4.4¢) have tc Dbe considered at
emittances larger than 2.5 mmm mr and conmpete with the normal 14-
pole and the gkew 20 pole at the dynamic aperture.

The: strongeat contribution (6%) from the second order
parturpation theory to the phase space diastortions is derived from
the term n=7,m=z=4,v=7,u=-2. It 13 the only important term which is
enhanced by a small denominator by a factor of S4. It is the result
of interference between mainly flrst order l4-pole and 8-pole terms.
Without enhancement theae terms cause distortions smaller than 1%.

Besides this single 14-pole ~ B- pole interference, the most
important second order distortions (2%-5%) come from 18-pole - 6-
pole interference terms. The strongest (4.7%) 1s the term

n=4,m=6&,v=4,u=4. It 1Is enhanced by a factor of 6.09. Interference
between 18-pole and 6-pole results 1in about ten times larger phase
zpace distortiona than the Interference of 1l4-pole and B-pole.

There are 16 combinations of lst order sextupole and first order
18-pole contributing to n=4,m=6,v=4,u=4. It 1is not very surprising
to find the strongest 18-pole terms among these contributions. The
build up of the strongest pair of lrst order terms ( n=1,m=2,v=1,u=2
+ n=3,m=6,v=3,u=4) as a result of a double sum over the lattice
elepents (eq.A9.3) 1s not particularly strong as one verifies
quickly by checking the denominators in eg Al3.5 (which is the
evaluation of the double sum for a regular lattice),

We can conclude this section by stating that there are no
important accidental enhancements of particular terms contributing
to the distorticn function due to the choice of tunes or due to
unfeortunate lattice design. Thus there is no accidental reduction of
the dynamlc aperture in the TEVATRON.
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5. Conclusions

The discussion in the previous sections leads to the conclusion
that the TEVATRON dynamic aperture is essentially given by the break
of f of the magnetic guide field. There are apparently no features of
the magnet multipole structure which are enhanced by the beam
dynamica and cause surprisingly large effects on the dynamic
aperture. Moreover, the multipole structure of the magnet is very
well reflected by the spectrum of phase space distortions which are
closely related to the dynamic aperture. The strongest phase space
diatortiona at the dynamic aperture are produced by the strong 18-
pole, That are the multipole components which describe the break-
down of the gulde field. Interference effects of the strongest
multipole components among each other are important for the dynamic
aperture but, at least up to 24-pole effects, are not dominating.

The characteriatics of the distortion spectrum suggest a
slightly different multipole structure. Because the 18-pole is much
atronger than 10,12,16 and 20 pole one expects that a somewhat
anoother break off of the gulde fleld emphasizing a 1little bit more
those components. Reducing the 18 and 14 pole leads to a larger
dynamic aperture and a more effective use of the available physical
aperture. This hypothesis will have to Dbe analyzed on the basis of
magnet deaign and field calculations.

The analysis in the previous section is by far incomplete and is
intended to be a first step. At this stage we are not allowed to
extend of these gualitative results beyond the machine model used
for the calculations. The conclusions may even change qualitatively
for a different lattice design. Thus we cannot not derive yet a
general rule which applies to all machines and each magnet design.

It 1s also clear that as a complement to investigation of
systematic multipole errors it is also necessary to analyze the
impact of random multipole errors.

One major goal of this study was to demonstrate how analytical
methods can be used to understand tracking resuilts.

A large amount of future analytic and complementary tracking
calculations will be necessary to provide the magnet builders with a
beam dynamicsg criterion for an optimum magnet design.
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APPENDIX

Fxpansion of Phase Space Distortions and the Slowly Varying
Hamiltonian

1. Introduction

In the following sections, phase space distortions (’'distortion
functions’) and the slowly varying hamiltonian will be expanded in a
parturbation seriea. The results are expressed in multipole
expanaion coefficients and linear lattice functions.

The traditional procedure using a generating function mixed in
a new and an old set of canonical variables as introduced by
Moser/M0OSSG/ and applied to accelerator problems by Schoch /SCH57/
and Hagedorn /HAGS7/ is followed.

In the past, the examination of the slowly varying hamiltonian
has been emphasized. It hag Dbeen attempted to parameterize the beam
dynamics by the strength of isolated resonances. Much effort has
been spent to define and to study the width of nonlinear resonances
/GUI71,73/.

In a real accelerator or storage ring however, one tries to
avald situations where just one or a few terms of the hamiltonian
are important. This is accomplished by a careful magnet design and
the appropriate choice of the working point.

Therefore in practice, one wusually finds many equally important
components in the hamiltonian rather than one strong term and the
nodel of a single 1solated resonances fails to describe the beam
dynamics.

In auch cagea, the dynamics may be characterized much better by
a transformation function of the canonical variables into a new
system where the hamiltonian 1is trivial. Tom Collins called this
tranzformation function ‘Distortion Functions’'/COL84/. Contrary to
the slowly varying hamiltonian, distortion functions contain all
harmonics of the nonlinear field distribution around the machine.

An important property of the distortion functions is that they
are given in an expansion in the nonlinear field strength and the
particle’s transverse oscillation amplitude. It 1is well known that
the expansion converges only as 1long as the total nonlinear effect
12 @mall. Near the dynamic aperture, where the nonlinear effects
become dominant, the concept of distortion functions has to be used
with great care.

Resides the traditional method described here, more recently Lie
algebralc methods have Dbeen wused to derive distortion functions
/DEB69/. First applications to accelerator problems have been made
/MIC85/ which look very promising.
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2. Hamiltonian Ebrmulation of Particle Motion with Nonlinear Fields

i ow

We start with a linear machine with no distortions and no linear
coupling. The only forces acting on the particles are linear
restoring forcea due to normal magnetic gquadrupole and dipole
fields. The particle dynamics 1is derived from a linear hamiltonian
G:

- 4 1.2 2 2
G = 5 X + 5y + kx(s) X ky(s) y (2.1)

Here, ®x and y are the particle transverse positions with respect
to the closed orbit; ¥ and y’ are the slopes of the trajectories
which are the canonical wmomenta 1if no longitudinal magnetic fields
are present. The independent wvariable 1is the longitudinal position
on the closed orbit 3. The 1linear restoring forces are represented

by functions kx Y(s). The solutions of the equations of motion

aG/ax = -9R’'/38 ; aG/X’ = dX/AS ; X' =3x/3s (2.2)

for x and y as a function of s are given in terms of the linear
lattice functions B(s) and a(s}) and the phase advances §(s) for x

and y plane respectively,

X = Jzexﬁx(s) cos (@X(s) + @x); y = JZsyBy(s) cos(@y(s)+@y)
(2.3

EX'Y and @x,y are constants of motions.

Sources of nonlinear forces ara e.g. sextupole fields for
chromaticlty compensation and field imperfections of gquadrupcle and
dipole magnets, Such nonlinearities contribute to the hamiltonian by
the longitudinal component of the vector potential of the nonlinear
magnetic fields which 13 expreased 1In a multipole expansion in the
tranasverse particle coordinates x,y with respect to the middle of
the nonlinear element:

2 2 2 n_m
' + I {s) X'y
nm nm

(2.4)
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Because the magnetic field has to satisfy Maxwells
equationg, the multipole coefficients B A€ related bhy:

VB=0 » ajon * &g gy =9 (2.5)

ifor the relatlonshilp of the Ao with the familiar coefficients ag
and bn see appendix B)

If the nonlinear fields are small distortions of the linear
restoring forces, it 1is desirable to keep the concept of linear
lattice functions. In order to express the solutions x(s),y(s) for
the distorted hamiltonian in terms of the linear lattice functions,
the 'linear’ constants of motion € and # must vary (variation of
conatants). If one inserts the solutions for x and y with varying
constants in the eguation of motion, one obtains a system of
differential equations for € and & which is of hamiltonian form
where & play the role of a generalized coordinate and € the role of
the canonically conjugate momentum. The hamiltonian for this system
contains the nonlinear distortions only. The transformation to the
new canonical variables & and & 13 a standard procedure in classical
mechanics (tranaformation to action and angle variables).

& ) 8@X BH(EX,Ey,@ R
H=ZXa (S)Xy 3s ad_ ? as ae

X ¥

(2.6)

The hamiltonian has to be expressed by the new canonical
variables ¢ and ¢. It is convenient to change the independent
variable from 3 to the machine azimuth ©. The hamiltonian then has
to be multiplied with the scale factor between both variables:

R = fds/2n.

Fapreassing the cosine-function in exponential form, one

chtains:

i(v(@ (©)+8 ) +p(d (O)+3 >)
X X Y Y

N3
oy =
[N

a n
Lrj2z .

| =

| . B ]
- n .
H=FRzt {n_u][m H]anm(m[z
ol s B G

The v and u are Integers with v el -n,-nt2,....n-2,n}
anad wel -m,-m+2,....m-2,m}
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3. New Hamiltonian Containing only Slowly Varyving Terms

It i3 well known /LIA66/ that, 1in general a nonlinear system is
nonintegrable and solutions expressed by invariants and periodic
lattice functions as In the linear case don’'t exist.

Zalutions of the problem have always to be restricted to two

extreme cases:
at the total impact of the nonlinear fields is small or

L) only one or a few components of the nonlinear hamiitonian
dominates the motion.

The aim of the expansion below is to advance as far as possible from
these extreme cases in the region of interest for accelerators and
storage rings.

The advantage of the above formulation of the dynamical system
{3 that 1t allows one to extract from the complicated hamiltonian
those terms which are 1{mportant for the particle motion while the
rest is treated in perturbation expansion.

We will try to find another set of canonical variables belonging
to a new hamiltonian which contains only those 'important’ terms. Iif
the variation of the hamiltonian terms with the independent variable
@ 13 fast compared with the machine period, the effect of such terms
i3 expected to cancel over many periods of the particle motionn. Only
the parts of the hamiltonian which vary slowly are expected to ke

important.
Before we proceed further, we want to factorize the hamiltonian

2.7 in two factors. One factor 1is periodic 1in the the variable ©
with a periocd of 27 (ring periodic) and the other is unperiodic.
This 1% done by splitting the phase advances Into average and
fluctuating part:

3, (0 = B () + 00 o (3.1)

where QX y are the linear machine tunes.

r

Then we define the periodic hamiltonian functions as:

‘ 1 1 , > >
 (ny(m 815 (8,15 if va (@) + us {@)]
h (@) =R n-viim-ul: a [m§]2.[_1]2_ g X y
rimvu e nm {2 2
2 2
(3.2)
The hamiltonian can then be written as
n m
noon [v@ P+ (V0 U0 )@]
_ 2 2 b4 X x 1’4
H= I hnmvp €y ay e ({3.3)

nmyvu
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We are now Looking for a canonical transformation, which removes
all the parts from the hamiltonian which vary fast with @ and
retains only slowly varying and constant parts. We assume a new
hamiitonian X which depends on new canonical variables J and ¥ but
has a similar form to the old hamiltonian H.

1 [VTX+MTX+(vQX+pr)6]

pi=

n

Z

K= Z k J. Jd e (3.4)
nmvp RVM X ¥y

The new variables J,¥ should differ only by & small relative
amount from the original ones e, because the motion is dominated by
the linear forces and the nonlinear forces are only distortions
according to our basic assumption. Thus the canonical transformation
is the identity transformation plus a small correction o. Because
the generating function removes parts of the old hamiltonian, the
most obvious ansatz for o 13 to assume 1t has the same formal
dependence of the variables as H and K. As a generating function it
isg mixed in old and new canonical variables:

STy /Ty 8,800 = T8 + T8+ 0 (3, 0,8,,8,,0)
n m
5 3 1 (v@ +ud_ +(vQ_+uQ )@)
s(@) =% o (0) Ji 32 e VX X ERRY
nmvy H y

(3.5)

The transformation between new and old hamiltonian is always

K = H + as8/a30 {(3.6)
and the transformation between old and new canonical variables is:
wx,y: aS/aJx,y ; Ex,y = aS/a@xry (3.7)

4, Perturbation Expansion of 01d and New Hamiltonian in Mixed

Cancnical variables

The algorithm described in this section was developed by Moser
/MOS855/. Explicit expressions for the hamiltonian up to second crder
and the generating function 1in first order have been presented by
Schoch /8CHS57/ and Hagedorn/HAGS37/.

We insert our expressions for K and S into eguation 3.6 in order
to determine the functions k and o by expressing the momentum
variable & by J and the coordinate variable ¥ by ¢. Powers of & and
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exponentials of ¥ must be expanded in a taylor series:

noom n. m n-2 m nm-2
2 2 2.2 n 2 2 m 2. 2
L €y Ievdy v 3 I Iy 8o/3d,  + Z J I, 30738+
n n
- 2 . 52
= Jx Jy
o n+2 -2 m;m i[v’ﬁx+ u&@ + (v’Qx+p’Qx)O)
+ i Z - ’ ] ] 4 J J €
nlmr\)rpr 2 nmwv }"l X Y
n+n’'m+m’ -2 .(
| nen (v ars, +vrew e o)
+ 1 I m%— O mt v u sz J 2 e X y X y
n‘m' vy’ M y
+
{4.1)
ilVTX+HTy+{VQx+“Qy)®}, 1[“@X+“@y+(vgx+“Qy)@]( Ao 3o )
@ = e 1 + vie + s + ...
ad ad
X
. ei(v@x+“@y+(vgx+“Qy)e]
ﬂ'-2 m' ¢ ’
+ X Qéw o SV L Ji ei((v+v P2y 40,0 + (utu )(§+QX)O)
nmy n‘m’v’u
i 9022 g {(vrv ) (8, +0,0) + (uru) (8+,)0)
+ 5:. Ton;mf\)f .'J J e *
nJmf\)ful “
+ ... (4.2)

These expressions get inserted in the equation 3.6 which relates
the old and riew hamiltonlian to the generating function.
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3o
nmvy
DR QNN VI N 5
nmvu ’ n om
NV mvi mvi

r.lf.\)ll
+ i): (k n " 3] Iio 4 ! ! ’ - h I i I ’ U 1 " " ll]
nimvu { 2 vt Tn'm'vu n‘m’'viuy n'm"v'y
nblmll.\)ﬂpll

n’+n“_2 m’*“m“ r T ' i 2

5 : i((v BV (B H0 01U )(@Y+QyO)J
J J e
. ml pil
+ lz (k it 1 1l i 0 f 4 i ! - h r ’ L ! G L1} (1] 11} II]
n‘m‘v‘p‘{ 2 n'mtv'u' T n'm'viu n'‘m’'v'u n'myv'u
n"m"\)"““
nl+n“ ml+m“_2 . ] “ i " ]
. : 1[(v V") (840,01 + (1 +1") (840 O) }

J J e

S

(4.3)

The terms are ordered according to their powers n/2 and m/2 in
the J and the arguments vé,ud of the exponentials. Because the
squation holds for any value of the amplitude J or phase ¢ it is
true for each summand characterized by nmvu:

i(va+pr)0nmvp + acnmvu/ae =

n'v
k - h + iz (k n n n It e ’ ? ] e h ¥ : ’ PR ¢ SN e " u)
nmv MV nmev u’ 2 n"m"v"u n‘m’'vu n‘m' v’y n"m"v"'u
n“m"\’“p"
+ iE m 5 (knllmll\’ll ll.onlmlvl f._ hn-'ml\}f f‘onllmil il ||)
nimavapl H 2 u Vv p
nllm"\)““"
+ e (4.4)

The two sums stem from expanding

Ex,@X and Ey’@y

respectively and will be referred to as x-like and y-like. The eight
indices of the double sum are related by
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lrst sum (x-like): n = n’'+n"-2 2nd sum (y-like): n = n’'+n"
m = m'+m" m=m'+m"-2

.oV = v+ AL IIRVAE SVA

F P VU Moo= R

(4.5)

At this point, we express the periodic functions h,k,o by their
fourier coefficients
1

gq _ 1 -ig@
hnmqu = 55 [ de hnmvp(e) e {(4.6)

Because the relation between h,k,o must hold for every O, it is
true for each single fourier component of h,k and o

19 R |
q - nmvu nmvu
nmvi
1(VQX+HQX+q)
. I.1.lvll q_ql’ qf q"qf q!
12 (k (1] i 1t ll0 ' ! [ L _h ’ i i 4 U " il [l i }
nmvi g 2 viutTn'm v n‘m’ v ' n"m'v'u
L pmtviu
i(va+qu+q>
. m M q-9° q’ q-q’ a’
lz (k " 1] ] IIG L ’ ’ 4 —h 4 4 ’ 1 O n 1] [ k1] )
n'mv g’ 2 n'm"v'u' n'mv'u mov S n'mtvu
Lontmtviy
i(va+pr+q)
Foenes (4.7)

N

Solving the equation for k and o by Iteration

Now we reguire that the new hamiltonian K contains only terms
which vary slowly (resonant terms) oOr which are constant, thus terms

with:



VQX+HQY + g = 3amall or v=p=q=0

For auch tepms, the whole

vanish and we can chose ¢ to in this case.

be zero
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(5.1)

right hand side of egquaticn 4.7 must
For all other

terms we can solve the equation by iteration. We start by inserting

g (0)
nmv

=0

in the equation and obtain in first order

g - hgmvp e s .
o = and k = h

nmvy i (vQX+uQx+q) Nl Ve by Ny Veky
The index r indicates resonant or constant terms.

iteration step we obtain

(5.2)

(5.3)

In the next

nll.\)l q_qf ql I"l’\?” q_ql‘ q
’z D U h ’ ’ ; ,-h M 41, 0 h ] ‘ ] ) h Mo 11 o 11 "
(1D n'm v 2 n m v M TRt MY Y 2 n'‘m'v'u n"m'v'u
Uq - nllmllvllpll
nm\)p s i 1 i
i (vQX+qu+q) (v"Q +u Qy+q )
—-Z M hqjq: J .lhq!: I " ll— M hqjq: 1] hql’ ]
A'm v M 2 nom v M. ntmtviu 2 n'‘m'v'u n"m"v'u
+ n“m”\’"p"
1 (vQX+qu+q> (v'QX+u"Qy+q'>
(5.4)
r.III\J-' q__q.ﬁ ql nlvli q_ql r
T z E h ' 3 F; I h T TR TR T e h ¢ ' ' TP T I TR
q(LI) _n'mivw 2 nom v M, nimtviy 2 n'‘m’ v n'n"v'u
nmvi n'm"v " a " :
r i(w Qx+p Qy+q )
m W ,9-g’ g’ _m'p' L g-g q’
IEJ , . 2 hnrmrvl’pf hn“m”\)”“” 2 hnlmf\)fulhnllmli\)llull
P rrrr
nm-wv “ i(\)“Qx+““QY+q’)
(5.5)
If we apply the canonical transformation generated by 8
including all terms up to second order{( guadratic in h), the new

hamiltonian K contains only constant
2nd order. The lowest order

terms

or resonant terms up to
oscillating terms are third order terms
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(cubic in h). We cut the expansion and iteration at this point and
assume that the particle motion is described sufficiently accurately
by the terms up to 2nd order.

£, Intraoduction of a Thin Lens Approximation

and Evaluation of the Greens Function

To evaluate the new hamiltonian and the generating function and
expreas them 1In a closed form iIn terms of the linear lattice
functions, we have to carry out an inverse fourier transformation to
obtain the Greens functlon for the differential equation 3.6. It is
convenient for later evaluation on a computer to assume the
nonlinear forces are acting as thin lenses on the particles. This 1is
no restriction on the generality of the result and has the advantage
of dealing with sums of terms around the lattice rather than dealing
with integrals. It is also straight forward to extend the result to
the general case.

Thus we write for the multipole coefficients as a function of the
longitudinal positions i around the lattice:

{ i 1 s+1i/2
Ios0-6,) ; ap, = a [ ds a__(s) (6.1)

nm

a {® =1L a
nm n

The fourier transform of the function h is then

. i i i i
1[v(¢x 0,01 + pees-0 00 - qo ]

q .1 i
hnmvp— T ? h nmvpu® (6.2)
. n m
; n m i.5,,i.5 ’
h* = z In-v m—p]{ax L By 2 at
nmvu i [“7"][—5_ 5= 5= nm (6.3)

In order to carry out the sums over g and 9’ to obtain the
Oreers function, we have to evaluate sums of the form:

gm eiq@ _ - e—l&(@aSlgn(G)n) C lim: w cos (1) o)
o= -0 a+g sin(ro) " oas0 gin{rx) '
If & 1s an integer or near an 1nteger the term g=-a gets

excluded:

- —i(o-sign(@)m) e -*° ; lim: O (6.5)
60
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7. Evaluati&n of the Generating Function; First Qrder Terms

We are now able to evaluate the generating function 5 order by
order at the azimuth O . The zero-th order of S is just the
identity tranasformation. The first order terms are given by
inserting eg. 6.2 into eq.5.4:

_ B n m [ 4 + )
S(I)(@ y = T hnmvu J2J2 el_w§x+u@y (va+“Qy q)@k
k . Xy
nmvi 1(va+vQy+q)
i n m LAk i
} : - hnmv JiJi ei(v@x+péy+(vQX+qu)®k) el(@ -Q7)
X <y

inmvu 2wl q i{va+uQX+q)

-ni 217 i(v(@x+®;) + u(@y+@;)]
= L . AmVM  yeg e
inmvu 21 Y

( iﬂ-siqn(ek— @i)(va+pr)
e

for vQX+pQ # integer
sin w(va+pr) ¥y

[ |
-1 = - 51qn(®k—@i) for va+pr = integer

(7.1)

It may appear confusing that integer and noninteger terms are
distinguished after resonant terms have been excluded from the
generating function in order to retain them as a driving term in the
rew hamiltonian. However we excluded only one term in the fourier
series. All the rest of the terms 5.3 have integer but non vanishing
denominators and are therefore included in the generating function.
Now we want return to real numbers and combine terms with the same
jw+ui. Then the sum over v extends only over positive numbers the
while sum over u extends over positive and negative numbers. We find
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nm o 1 i

S(I)(Q y = 3 ~ hi J2J2 51n[v(@x+@x+ skian)+p(@y+@y+ skiﬂQy))
K inmye R E sin T(vQ_+u0 )
. X ¥

3y = 3ign (6 -9y) (7.2)

In arder to carry out the transformation between old and new
coordinates, 1t is convenient to introduce an amplitude and a phase:

(D[22, .2 _ i i i J
bnmvu“ ZS+ s ; EC = § hnmvucos{v(éx+skiﬂQx)+u(@y+skiﬂQy)
k(T 1) e { 1 i
R e o : hnm“H51n[v(¢x+5kiﬂQx)+p(®y+skiﬂQy)]
nmvy
(7.3)
nm . k(I)
() K(I) 2.2 51”(”@x+“¢y+ Qnmvu]
st -z sh Ll T (7.4)
nmvi M Y sin ﬂ(va+pr)

The same procedure for the ‘integer’ terms results in:

1 0,795 id
Zc = ? hnmvp 7 T Sy cos(v@x+uéy) etc (7.5)
nm
(L) _ k(I) 2.2 k(1)
Sk = nivpsnmv“ Jny cos(v@x+piy+ @nmvp) {7.6)

B, Fvaluation of the Generating Function; Second Order - First Part

We are turning now to the second order terms for 8. There are
four parts of second order terms:
There are two sums each for ‘x-1like’ terms and ‘y-1like’ terms
respectively. The first sum in each group contains the product of a
‘resonant’ or ‘constant’ coefficient h with a 'non regonant’ one.
The second term in  each group contains products of ‘resonant’ and
‘non resonant’ terws h as well with a ‘non resonant’ one. We start

with the first term:
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gince v;Qx+u%QY+ g-q'=0 (or=0) for resonant or constant terms
\)Qx*_qu” + q - (\J"‘}"J")QX‘*‘(H"‘}'UH}QY‘F q ~ \,uQx_l_Man_'_qJ

= q-9q' (8.1)

4, = a9
For congtant terms vr’=u’=q—q’=0 the expression vanishes
because 1t haa vr‘ ag a factor so that we have to deal with resonant

terms only:

. j
\J h ¢ ¢ ¢ [ h 1) [T] EE] 1]
roonmov KNt AVART) S
M Biﬂ2
M

i[ & _+ud_ + 10 ]
G (IT)_ Ve, B+ (VO 0Oy

kr " J

e

FE NTka
T

i i 4 i i L3 i T L} j n j o 1] j
1(vr§x+pr@x+(ver+prQy)e ) 1(v @x+p b4+ (w Qx+p Qy)@ ]

e a y
1e*-ohq, e—i(Ok—OJ)q'
e
[ L1 1 ’ 2
dy g (VTR TR *a’) (8.2)

The sum over

n.m.w
rr r“rqr

eztends over only a few terms. We carry out the sum over g’ and find

n“vé h;’m'v'p'hg”m“v”u”(Ok—ﬁj—ﬂs Arcotm(v'Q_+u"Q )
S(II): 5 5 rrrr ki X v
kr nmuu ntmtytut 8w sinﬂ(v“Qx+u“Qy)
1] DMy Vb 9y
E ‘.mm 3 3 " j L] j H "
J2J2 el(véx+p§y)‘el[v @x+p ®y+skjw(v Qx+p Qy)]
Xy

A IS R | . , k i
1[vréx+préx+(ver+prQy+qr)(@ -0 ))
(8.3)
In most cases, where there are resonant terms in first order, we
need not proceed with the perturbation expansion. On the other hand,
usually we try to avoid isolated resonances driven by first order
terms by a careful choice of the tunes. Thus we will exclude from
our considerations situations where the above terms may become
important. One should mention at this point, that the first sums

e
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juat evaluated for the generating function wvanish for the second
order hamiltonlan ceoefficients 5.5. Because we would have
: va+qu+q=0-

with the restriction v’Qx+u’Qy+q~q’=0, we also have v“Qx+u“Qy+q’=O.

For such terms however the coefficient o(n"m"v'u"g’) in 5.3 is zero.
Thug there are no contributions to second order hamiltonian
coefficients & from the first sums.

9. Fvaluation of Generating Function Second Order; Second Part

We move now on to the second sum 5.4. If we insert the
coefficients hi (6.3) we find for the x-like terms:

PP & i n
_ n \’ hn‘m'\)‘“‘hn”m”\)"u“ 2
= Z z 5 J=J
13 3 ’ ' . X
nmvu n'm°'v’u Biw
ij n"m”\)“u"

(1)
Sy

ei(véx+u®y+(va+qu)6k)

= oroig

[ i Fl 1.‘ Fl [ i 1] j " j (£} " j
i[v SV SRR Y ] i[v sruralrvrg rurg 10 )

e e
k i ]
10%qg i(e -0')q"
s £ ~. . .z €
q va+qu+q -t Qe tu Qy+q (9.1)

Carrying out the sums over ¢ and g’ and combining complex
numbers to real numbers as before leaves us with:

i " i j [ j_ i n j_ i 1l H
k nmviii 2 sinm(vQ_+uQ_ ) sinw(v"Q_+u"Q )
RN X y X y
n"m"vu
nfma\)ful

o il ]
rag

. i i
I ﬂln(v(@x+®x)+u(@Y+@Y)+skiﬂ(wa+qu)]

(9.2)



40

we get a similar result. The symmetry

between - and y-terms 13 only broken Dbecause v but not u is
restricted to pdsitive integers. This results 1in a factor sign(y)
for the 'y-like’ terms. Besides this, the y-like terms differ from
the x-1llke terms ohly by the factor mu instead of nv and the
different relationship between n,m and n’'m’,.n"m" for x and y like

terms.
If we exclude the existence of resonant terms in first order, we

doen’'t need to exclude any terms in  the above sum 9.1 over g’. Thus
we will have no

For the ’'y-=like’ terms,

u+ ] - _ .
v qu Qy integer terms
except constant terms with v"="u=0 which vanish because because of

the factor v".
The sum In 9.1 over g however contains second order dencminators

which in general include terms
vQX+przinteger.

Therefore for 2ach second order resonant term to be retained in the
hamiltonlan, we keep the complementary sum over g in the generating
function 8 which has the form:

’ i i j u j_ i 1] j__ i [l "
RESTNLE hn,m,v,u,hn"mnv“pucos[v 188, [+u" 18] -8 1+ (v 0 +u Qy)]
k nmvpi j 2 Sinﬂ(v”Qx+p"Q )
n"m"v"u" . y
n‘m" v u’
- n m
{@i %, g ] 323 2 cos(v(@ rolyiuce +s1))
m ki Xy X X Yy v
(9.3)
in the second order generating function.
We now define the second order coefficient
’ 1 j— j ] j___ i " j_ i r H
oi(II):z n'y hv,p.v,p.hnumuvup"cos(v ]@x @X{+p I¢X,®Y|+W(v Qx+“ Qy)]
nm\“u numu 2 Siﬂ ,H_(\’HQx_l_uHQ}r)
\) ] u H j
(9.4)
[Gi(I) - i ]
NV nmw

and see the analogy between first (see 7.2) and second order terms:
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i i -
sin(v(@x—@x+ skiﬂQx)+ptﬁy+éy+ dkiWQy))
Y

a m

(LD - 1(IT), 2.2
3 (&, ) = 1 J.J
K inmv@-nmv“ Y

) (9.5)

First and seccnd order terms differ only by different
~oefficients o. The dependence on the wvariables is the same for all
orders. Of course the second order coefficients include higher
orders n+m than we have in first order. The second order
coafficients for each lattice point 1 require a sum over the whole
lattice starting from i and a sum over all pair of first order tevms
which combine to the second order term under consideration according

to the rules 4.5.
We proceed In the same way as for the first order terms by

defining an amplitude and a phase

ain ﬂ(va+pQ )

oKX,y (I1) g g%, y(ID) (9.6
nmvi nmvu ‘

for x and y-like terms respectively.
The generating function wp to 2nd order 1s therefore of the

form:

nm k(I
5 5 1 (v&_+ud_+9@ 3
S(0,) = Jx@X+J o+ "Sﬁéi) JiJz e X ¥y nmvu
y nmvu H y
nm. . kx (1)
N kX(II) J2J2 el (v¢X+H®Y+®nmvp )
nm-vi nmvy Xy
nm . ky (II)
+ 5 SRY(II) J2J2 e1 (V@x+péy+@nmvp )
nmuu nmvy Xy
+ higher orders (9.7)

It i3 interesting to notice that the transformation between new
and old canonical momenta J and € is essentially a fourier transform
in the phase angle ¥ with coefficients expressed in a closed form in
terms of the mnultipole coefficients and the 1linear lattice

functions.

If no rescnant terms have to be retained in the hamiltonian, the
transformation function, €=J+35/3% describes the whole effect of the
nonlinear flelds up to the order it is expanded. One can consider it
as a ‘distortion function’. It 1s a ring periodic function which
deacribes the distortion of the beam emittance as a function of the
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unperturbed emittance J and the particle phase ®. J is solution of a
Lrivial new hamiltonian which contains only constant terms

[T}
s

K =% k J4J
nm MO0 XY (9.8)

The validity of the description of the rionlinear effects by the
generating function and a trivial hamiltonian is however restricted
to the case where the distortions g-J and ¥-% are small, because
this was an explicit demand as we truncated the taylor expansion for
powars of £ and exponentials of ¥( eq’s 4.1, 4.2).

Nevertheless it 1is very useful to calculate the generating
function. One recognizes which multipole component are important for
the particle notion and 1t 18 easy to vrelate the strength of the
digtortion with lattice parameters like systematic multipole errors,
phase advances etc.

Fig. Al ahowsz as an example the comparison between phase space
trajectories cbtained by tracking (solid 1lines) and obtained from
distortion functioneg (dashed lines). The lattice contains just one
atrong sextupcle represented Dy five kicks at a betatron phase
advance spacing of A$=0.01. There is no betatron amplitude in the y-
plane. The horizontal tune is 0.27.

If the amplitude doesn’t exceed =1/2 of the maximunm stable
amplitude represented by the outer solid trajectory, tracking and
perturbation theory agree fairly well. There are strong differences
in the trajectories at the stability limit. However, the outermost
dashed curve is also what one can consider as a stability 1limit for
distorted trajectories. The amplitude distortion e-J starts to
exceed at this amplitude the increase in the amplitude itself thus
ar/al i3 =zero for this trajectory. This agreement 1Is a very
aurprizing and encouraging property of distortion functions. The
comparlson has been repeated for another tune far from a resonance
0=0,38. The result is shown in fig AZ. One finds the same kind of
qualitative agreement between tracking and distortion function.
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-

e =

Comparison between Tracking and Distortion function

80lid lines are tracking, dashed lines are distortion
Q = 0.28 ,see text
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: t Xb<+x‘{5

Fig A2 Comparison between Tracking and Distortion Function
for a Tune of (Q=0.38, see text.
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10. Evaluation of the Hamiltonian; First order

2
-

We turn now to the evaluation of the new slowly varying
hamiltonian based on egquation 5.5 and the hamiltonian coefficients
defined in egq. 6&.3. According to 5.3, the first order new
hamiltonlan K contains just the resonant and constant parts of the
old hamiltonian H. We 1insert eq.6.2 1nto equation 3.4 and combine
again each term with its complex conjugate and find:

nom

(1) 1 i 3.3 _ 1

ft e nﬁvphnm““JxJYcos(v@X+“@Y (VR HRy+q)0 +va+p?Y+(wQX+pr+q)e)
igq

(10.1)

The sum over nmvug extends cover resonant terms only.
As for the generating function, we form an amplitude and a phase

by:

q(I_ 2 . _ 1 i i, .1 iy |
KILI= JElemD 0 To =R T hp 008 (Ve ke s (V0,0 +)® ) setc
nmvu

(10.2)

The hamiltonian can then be expressed in closed form:

nm
(1) q(I) 2.2 ( q(I)

k'Y -z X 7232 cos [ Ve +u¥_+(vQ_+uQ+q)O+d )

nmvu nmvp Xy X ¥ X v nmv (10.3)

If there i3 only one rescnant term nmvu, one usually introduces new
angle variables .

[va+q ) MO +q
0. = ¥ + vl—m——s|0 . = ¥ + uf—=s—75—|0
X LN LA A e (10.4)
which are generated by the generating function:
F(IX,QX,Iy,@y,@) = Ixmxtéx,a) + Iy¢yc®y,®) ; Ix= Jx; Iy= Jy
(10.5)

The corresponding hamiltonian W does no longer depend explicitly on
the independent variable © and 1s therefore constant:
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vQ_+q Mo +a
W= K + aF/3@,= VI, ”iﬁ‘*i + Wl [—51——51
B AV R ¥ AVARE R VY
) nm I
2.2 (1)
* knmvquJy COS(v¢x+“¢y+¢nmvu ) (10.6)

Phase space trajectories J(g) are given for each value of W by
inverting W_ =W(J, ) with respect to J. The separatrix is the orbit
which passesotrouqh the fix points given by 3W/3J=3W/3¢=0.

11. Evaluation of the Hamiltonian Second order

The evaluation of the second order hamiltonian is much like the
evaluation of the second order generating function. We again insert
the hamiltonian coefficients from equation 6.3 into the expression
5. 4. We already pointed out 1iIn section 8. that there is no
contribution from the firat part of 5.5 which involves products with
resonant filrst order coefficients. For the second part, after
carrying out the sum cver g’, we obtain

PN J nm o
K(II}z s n'v hn’m’v'p'hn"m“p”y“ J2J2 el[vTx+pr+(va+uQ+q)®]
in‘m' v’ 8ﬂ2 sin ﬂ(v“Qx+p“Q y * ¥
jn“m“\)"p“ y
i i_ N 3 1} j_ i i jF i 1] n
ei(v@x+uéy (va+pr)Oi].;(v (8)-80)+u (8] -8 ) +s MV +u Qy)]

(11.13

We combine again complex numbers to real numbers and v is
restricted to positive integers again. The sum over j n'm’'v'y’ and
n"m*v"u" is the same as in equation 9.3. Thus we can use the second
order coefficient o defined in eg. 9.4 to express the generating
function and we write the second order hamiltonian:

m

n
- Iy 21 2 1.1 .
Y 723, cos(vwx+p¥y+cva+pr+q)e+v@x+p@y—(uQx+pQY)oi)
wiui

(II) -1
K =T

(11.2)
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For the y-like terms we have a similar expression which differs
only by the factor mv in the o-coefficient and by the factor sign(u)
tor the reason pointed out in section 9 discussing the generating
function. For the hamiltonian too, the second order terms have the
same form as the first order term differing only by the coefficient
h vs ¢, Defining amplitude and phase the same way as before (see
eg's 10,2, 7.3, 7.4), we obtain the new hamiltonian containing only
alowly varying terms up to 2nd crder in the multipole fields:

nm
~ q(1) 2.2 [ q(I) ]
K = niv“ Knmvu Jny cO3 v¥x+uwy+(vQX+qu+q)®+®nmvp
nm
gx(IIy 2.2 g(Il)
—nﬁvu Knmvp Jny cos [ v¥x+p?y+(vQX+pr+q)®+®nva ]
n
- Z KE%LiI) JiJi cos { v¥x+p¥y+(va+qu+q)e+@g;£$) )

nmvy

(11.3)

Note that not all second order terms which appear in the
generating function are potential driving terms in the second order
hamiltonian. If the second order term in the generating function is
compoaed of just one palr of first order terms with v=v’ +v",v =v"
(game for W), the resonance denominator 1is cancelled as it has been
rointed out by L.Michelotti/MIC8S/, Thus the transformation
contribution from such terms does not get infinitely large when
approaching the rescnance but remains confined to off resonance
values. That means for example that in second order perturbation
expansion sextupole fields don't excite the 6th integer resonance
(3+3) but excilte only the 4th and 2nd integer resonances,

Figs A3,A4,A5 show as an example the phase space trajectories
near the 4th-integer resonance driven 1in 2nd order by sextupoles.
Juast one oscillation plane 1n phase 3pace {3 assumed. The tunes are
0=0,255(f1lg A3y, 0=0.20 (fig A4) and 0=0.27 (fig AS5). The other
parameters determining the4 rhase space trajectories were: 8=100m,
@=30my,r°=1 Iinch and b,:-10" = 100, The lines in the figures are the
perturbation theory tr%jectories and the dots are the result of

tracking.
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Close to the vresonance. the agreement between tracking and
theory is almost perfect. The only difference is a small rotation of
the theoretical trajectories with vrespect to the tracking result.
This 1s due to the missing higher order ( than 2) detuning terms.
For the tune . 0=0.26, the agreement is still satisfying. At the
largest tune disagreements become bigger and the single resonance
approach starts to break down.

CANOL VERSION 2
(X#ALFA+XP*BETA /MM= 3. 61998

LL2 mmme ) ma

S+ X/MM= 8.651998

_] -

fig A3 Comparison between theoretical phase space trajectories
and tracking near the sextupole excited 4th integer
resonance ( Q=0.255, see text) :
Lines: Perturbation Theory
Dots: Tracking



CANOL VERSION 2

(X¥ALFA+XP=BETA) /MM=13. 17346

A

fig A4 Phase Space Trajecories for a tune of 0.26.

Lines :perturbation theory
dots: Tracking
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= B.26b

- X/MM= 13, 1734
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CHMOL VERSLUN £
(X*¥ALFA+XP*BETA) /MM=16. 944456

QB =8a.27

- X /MM= 1B, 9444£

fig AS Phase Space Trajecories for a tune of 0.27.
Lines :perturbation theory
dots: Tracking
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12. Third and Hiéhﬂr Order Terms

It is very straight forward but a little tiresome to extend the
expanasion to higher than 2 orders. Higher order Taylor expansion
ferms have to be included 1n edquation 4.3 and the iteration of
equation 4.7 has to Dbe continued until all terms wup to the
particular order are included 1in equations 5.4 and 5.5. The
procedures to obtain the generating function and the hamiltonian are
the same a3 before., We will not Dbore the reader by repeating it
again and gilve the result for the third order generating function
instead:
in third order, we have three different terms which we will
characterize by xy-like, xx-like and yy-like. They differ by an
integer factor f. As the two second order terms they differ by
relationahip between the indices of the (first order terms they are
created from and the indices of the third order term. The
relationships are

xy-1llke ®x-like yy-like
n=n’'+n"+n’’ -2 n=n’+n"+n’’'-4 n=n‘+n"+n’"’
m=m1+mll+ml s _2 m=mi+mll+ml r m=ml‘ +mll+mf ! _4‘
\}:\)J +\’Il+.\’f + \)_:\)l +vll+.\')l [ \J:\j‘ +\‘l|+\)! ’
VESVRE SRR AV TS Vi S Vo VR MM MR (1201

The integer factors (which are nv for the x-like 2nd order terms
and mp for the y-like 2nd order terms) are far more complicated for
the third order terms:

xy-term: fxy: n' (v=v/ ) {m-m’ Y’ #m (- ) (n-n")v"’'-n'm’ v'u’

XxXx-term: fxx: n‘(v-v)in-ni)v '"-n'{n’'-2)vw"v’’

yy-term: fyy: m' (p-u Y m-m Y’ -m (m=-2)
(12.21

The third order generating function evaluated at position p in
the lattice then has the form:
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nm .
- = +
wa(IID) ¢ fvw 252 el(”@x e,
nmyi nlmt v 37 XYy
nlimH\Jl u
nJ JmJ l.\,l !ull
’ i Fl i R ’ !
. ei[w @x+p éy+spiw(v Qx+p Qy)]
L h_._,. ...
n‘m’'v'u .
1 sin 7 (va+uQY)
] 1t j_ i " j~ i " "+
L el(v (a)-ahy e a)-a0) s m(vg H0 Qy)]
n“m"\)“H” , " “
3 sin 7 (v Qx+“ Qy)
oo sK_ g1 R Y ' ‘e
) el(v (3-8 )+ (8580148, m(v'1Q +u Qy))
z h PR i 7 ir ror
l’l m \, H Fa oy
k gin 7 (v Qx+u Qy) (12.3)

The most remarkable and important aspect of this result is that
the sum over k does not depend on the index j but on the index i.
That means that for the third order expressions we don’'t have to
carry out a triple sum but two double sums. The same is expected for
any higher order. Therefore 1t 1s not 1impossible to evaluate the
distortion function or the hamiltonian for higher orders
perturbation expanaion. If there is a fixed maximum resonance number
v+u up to which the terms 1in each perturbation step are calculated,
the computing time increases cnly linearly with the expansion order.

13. The Case of a Simple Reqular Lattice

If the lattice consists of a regular FODO cell structure with
systematic multipole errors of the dipole magnets and of an
insertion with no nonlinear fields, the driving terms and the
distortion function can be expressed in terms of the phase advance
per FODO cell. This can ke done for any distribution of nonlinear
fiald in the FODO cell. As an example the result for the case with
juat two nonlinear kicks 1in the middle of each half cell is
prezented. The phase advance per FODO cell will be denoted by ¢ and
the phase advance between two nonlinear kicks i3 Qf or @d for a
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focusing or a defocusing guadrupole 1in Dbetween respectively.
Horizontal and vertical phase advances and lattice functions are
assumed to be the same at the positions of the nonlinear lens. The
number of the Yegular cell 1s denoted by k. The situation is
sketched in fig A6.

Qg nonlin. gy nonl.  Q nonl. Q4

kick kick kick
T e v L
(]—| Bend |-)[—1 Bend 1—[)—1 Bend |—)[#| .......
— @d a'e @f -
- & N
C

Fig, A& Schematic view of Regqular Cell structure

For this case the sum 7.3 for the first order generating
function or distortion function is:

n
e homou kzl[sin[k(v+u>@c—n(va+qu)]+sin[k(v+p)@C+v@f+p¢d—w(vQX+pgy)]J
v +ud v +ud
K VErTHE k+1 £ M
=2hnmvpsin(2(v+u)éc]-cos(———jmmw]-cos[—i—(v+p)ﬁc+—_~§n*~ -ﬂ(va+pr)
sin(v+p)@c/2)
" v +p¢d ' vl _ +ud
: =2hnmvp31n(i(v+“)@c]'COS(—'”ﬁ_*“ +3in E%l(v+u}@c+——£§——g —w(va+pr)
s SIn( (V48 /2)
{13.1)
vl _+ud
k £ d
1 : 2hnmv“sin[i(v+p)@c] cos[~ﬂ-§———]
nmyvu sin((v+p)@c/2)
§.+ud
I  k+l VEFTHREy
ﬁnmvu = wi—(v+u)§c+ 3 w(va+pr) {13.2)



The amplitude of

For a gulck estimate one <can a3slumc b.=%..
' gmpqe expression:

the generating function is than given by the s
z

3 i ]5
SI i} hnmvp51n[2(v+p)@c]

nmvi sin((v+u) 8, /4)

(13.3)

One expects a large contribution to the phase space distortion
from those terms for which the argument of the sin-function in the
denominator of 13.3 i3 equal or close to (2k+l)-7 (k integer). Then
the lattice sum reaults in a factor n for the amplitude 5. Note that
this 1% always the case for detuning terms v=pu=0.

Unfortunately the expressions for the second order coeficients

are rather complex. We first introduce the abreviations:
r o= VHu; p = ﬂ(va+pr) ;d o= veeHudyr g = op + d/2 4 rd/2; o=n,m,v,u
(13.4)

Reference point for the amplitude of the second order generating
function 8 13 the first element in the structure. One obtains:

ITx_ n‘wv" ha,hm”cos(d“IZ)cos(d/Z)

3 z
* oot 2 ain(p) sin(p") sin(r“@c/2)
k- " - it _g-“ ]‘_S 1] 4 ]_( 1" ] 1 > k-
sintir @C P 2) sintz(r+r )@c)+ 51n(2(r—r )@C) +251n(q )51n(§réc)
r+r" . r-r" .
I 2 sin(—j— @C) 51n(—7ﬂ @C) . 51n(r®C/2)
(13.5)

One recognizes that the build up of second order coefficients
over the lattice is maximum if

(v+p)-@c/2 = 1% (j integer )

(v“+p")@c/2 = jm
(v+v”+u+p")®C/2 = g7
(v—v“+p—p“)écf2 = 7

The use of these formulae saves an immense amount of computing
effort. It may be the only way to wuse the distortion function

concept for very large accelerators.
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APPENDIX B

Myltipole Coefficients a

nm

Multipole coefficients as a vresult of a measurement are
usually expressed as the relative fleld error measured at a certain
radius r. The multipole field strength in terms of these
coefficlients a and bk and the bend angle @° is given by

k k

e _ . ) ,
5oc fds (By+1BK} = E, 0°C bytia ) - (x+iy) X sk

in thls report , the vector potential A of the magnetic field
13 expanded in multiploles using coefficients a

nm
o N 0 horizontal
oo [ds A = 0 nom vertical comporient
P Z a Xy longitudinal

The coefficients a,, are given in terms of the &, and bk:

m = even, "normal multipole"

m/2 (n+m-1)! po. p-{n+m-1)

®m (=1 nimd n+m-1
m = odd, "skew multipole"
- — | —_ -
a - (_1)(m 1)/2 (n+m~-1)! . go. pointm-1)

nm n'mi an+m—l
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